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Abstract 8 

Coastal moorings allow scientists to collect long-term datasets valuable in understanding shelf dynamics, detecting 9 
climate variability and changes, and evaluating their impacts on marine ecosystems. Continuous time series data from moorings 10 
is often disrupted due to mooring losses or instrument failures, which prevents us from obtaining complete and accurate 11 
information on the marine environment. Here, we present an updated version of the 14-year subsurface mooring dataset off 12 
the southwest coast of Western Australia during 2010-2023 (https://doi.org/10.25919/myac-yx60, Bui and Feng, 2024). This 13 
updated dataset offers continuous daily temperature and current data with a 5-meter vertical resolution, collected from six 14 
coastal Integrated Marine Observing System (IMOS) moorings at depths between 48 m and 500 m. Self-Organizing Map 15 
(SOM) machine learning technique is applied to fill in the data gaps in the previous version. The usage of the in-filled data 16 
product is demonstrated by detecting sub-surface marine heatwaves on the Rottnest shelf. The data products can be used to 17 
characterise subsurface features of extreme events such as marine heatwaves, and marine cold-spells, influenced by the 18 
Leeuwin Current and the wind-driven Capes Current, and to detect long-term change signals along the coast. 19 

1 Introduction 20 

Oceanography moorings use underwater instruments anchored on the sea floor to collect ocean currents, temperature, salinity, 21 
and other environmental parameters. Sustained long-term mooring observations serve as invaluable resources for 22 
environmental and climate research and play a vital role in calibrating and validating numerical models (Bailey et al., 2019). 23 
Typically, mooring services range from every 4-6 months in shelf waters to up to every 18 months in deep oceans (Sloyan et 24 
al., 2024). 25 

The southwest Western Australian mooring array is part of the Integrated Marine Observing System (IMOS) program 26 
operated by CSIRO since 2009, designed to monitor the influences of the southward-flowing Leeuwin Current (LC) on the 27 
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continental shelf (Chen and Feng, 2021). The anomalous meridional pressure gradient, associated with warm, low-salinity 28 
waters from the tropical Pacific Ocean entering the Indian Ocean through the Indonesian Archipelago, is the main driver of 29 
the LC (Thompson 1984; Feng and Wijffels, 2002; Godfrey and Ridgway, 1985). The strength of the LC varies seasonally due 30 
to variations in the alongshore winds (Smith et al., 1991). During austral summer, strong alongshore northward winds drive 31 
northward Capes Current in the mid-inner shelf (Fig. 1). The interannual variability of the LC is often associated with the El 32 
Niño–Southern Oscillation (ENSO), the current being stronger during La Niña and weaker during El Niño (Feng et al., 2003).  33 

The southwest Western Australian mooring array has helped scientists identify the key role of the LC in the development 34 
of marine heatwaves (MHW) off the coast (Benthuysen et al., 2014; Feng et al., 2013). The mooring data has also been 35 
employed by Feng et al. (2021) to detect abnormal cooling events off the coast over 2016-2019 (defined as the marine cold 36 
spell, MCS) when the thermocline depth was elevated due to the weakening of the LC during the El Niño events. The sustained 37 
IMOS mooring array encompasses six coastal moorings on the Rottnest shelf during 2010-2023, ranging from 50m to 500m 38 
(Fig. 1 and Table 1). The first version of the gridded data from these moorings was published by Chen and Feng (2021) and an 39 
extension was published by Bui et al. (2023). Mooring time series are susceptible to missing values due to mooring loss and 40 

 
Figure 1. Bathymetry map and mooring locations (red circles) on the Rottnest Shelf. The red arrows denote the Leeuwin 
Current, while blue arrows show the direction of the wind-driven Capes Current. The three dashed lines present the 50m, 
200m and 500m contours. The black circles denote the location of the Fremantle tide gauge station. NRSROT has two 
separate moorings. 
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instrument failure. Strong currents can exert force on the mooring line, causing it to be pushed down in the water column, 41 
leaving data gaps near the surface (Sloyan et al., 2023). This paper introduces a new update of the mooring data, filling data 42 
gaps with a statistical method. 43 

 44 

Table 1. Summary of coastal mooring stations. 45 
Station Latitude;  

Longitude 

Station  

depth 

(m) 

Temperature ADCP 

Instrument Interval 

(min) 

Mean 

sensor 

depths 

(m) 

Data 

span 

Instrument Interval 

(min) 

Bin 

numbers 

x bin 

size 

Data 

span 

NRSROT-

Temperature 

31.9900°S; 

115.3850°E 

61 SBE39 

SBE37 

5-15 27; 33; 

43; 55 

1/2010-

5/2023 

    

NRSROT-

ADCP 

32.0000°S; 

115.4170°E; 

48     Signature 

500 

15 11x4m 8/2011-

5/2023 

WACA20 31.9830°S; 

115.2280°E 

200     Signature 

250 

15 41x5m 8/2011-

5/2023 

WATR10 31.6433°S; 
115.2033°E 
 

100 SBE39 

SBE37 

5-15 25; 30; 

35; 40; 

52; 70; 

90 

1/2010-

5/2023 

Nortek  

Aquadopp 

400 kHz;  

15 17x5m 8/2011-

5/2023 

WATR20 31.7233°S; 
115.0333°E 
 

200 SBE39 

SBE37 

15 25; 35; 

50; 68; 

100; 

125; 

150; 175 

1/2010-

5/2023 

Signature 

250 

15 25x8m 8/2011-

5/2023 

WATR50 31.7683°S; 
114.9567°E 
 

500     Signature 55 15 26x20m 8/2011-

5/2023 

 46 

Various techniques have been employed to address gaps in mooring datasets. Sprintall et al. (2009) utilized a damped 47 
least square fitting method to fill substantial gaps in mooring current time series data, in estimating the Indonesian Throughflow 48 
transport. Wang et al. (2015) adopted a combination of data extrapolation, interpolation, and a least square regression model 49 
to fill in missing data recorded in the central equatorial Indian Ocean. More recently, Sloyan et al. (2023) experimented with 50 
a machine learning approach, the Self-Organizing Map (SOM), to fill data gaps in the East Australian Current mooring array. 51 
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The choice of method depends on the characteristics of data loss, such as the duration of gaps or the depth range affected, as 52 
well as the intended analyses of the data. 53 

SOM is a technique that projects high-dimensional input data onto a two-dimensional output space while preserving 54 
the topological structure of the input data (Kohonen, 1982). In SOM, units are organized so that similar units are positioned 55 
close to each other, while dissimilar ones are separated in the output data space. This method has found extensive applications 56 
in meteorology and oceanography (Liu and Weisberg, 2011), and can perform a range of tasks including clustering, data 57 
analysis and visualization, feature extraction, and data interpolation (Lobo, 2009). 58 

Chapman and Charantonis (2017) utilized SOM to reconstruct deep current velocities in the Southern Ocean from 59 
surface data. They used densely observed surface velocities, sea surface height, sea surface temperature from satellites, and 60 
sparsely observed deep current velocities from Argo floats to train the map, then derived dense velocity fields at a depth of 61 
1000m. Their method took advantage of local correlations in the data space to find the smallest Euclidian distance, weighted 62 
by the local correlations, between a vector with missing components in the data space and the SOM units, which increased the 63 
accuracy of the filled deep velocities. 64 

This study employs the SOM method to fill in the data gaps in the southwest Western Australia mooring data, following 65 
the procedure in Chapman and Charantonis (2017), to generate a gap-free time series dataset. The use of the continuous dataset 66 
is demonstrated by examining several extreme temperature events that occurred in the region.  67 

2 Data and methods 68 

2.1 Moored instrument data  69 

2.1.1 Temperature 70 

The in situ temperature dataset is collected using Seabird Electronics instruments, including SBE37, SBE39, and SBE39 71 
plus, with sampling intervals varying between 5 and 15 minutes (Table 1).  To ensure data quality, the raw dataset underwent 72 
rigorous quality assurance (QA) and quality control (QC) procedures (Morello et al., 2014), utilizing the IMOS Mooring 73 
toolbox written in the MATLAB scientific programming language. Only data flagged as 1, indicating good quality, are retained 74 
for this analysis. The QC data are concatenated, and then linearly interpolated onto a grid of 5 m vertical resolution and 75 
averaged daily (Bui et al., 2023). The unfilled data are available in the CSIRO Data Access Portal 76 
(https://doi.org/10.25919/9gb1-ne81). For data completion, we use satellite sea surface temperature (SST) sourced from the 77 
Regional Australian Multi-Sensor SST Analysis (RAMSSA) version 1.0 (Beggs et al., 2011), to extend the temperature data 78 
at each mooring to the sea surface by linear interpolation. When minor gaps occur near the bottom, we use two available data 79 
points at the bottom of the vertical temperature profile to extrapolate linearly to the sea bottom. The resulting daily 5m-vertical 80 
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resolution temperatures at NRSROT, WATR10, and WATR20 moorings, spanning from January 2010 to May 2023, are 81 
presented in Fig. S1. 82 

2.1.2 Velocity 83 

The velocity observations on the IMOS mooring array are recorded by various instruments, including RDI Workhorse 84 
300kHz/600kHz, RDI Long Ranger 75 kHz, Nortek Continental 190 kHz, Nortek Aquadopp 400 kHz, and Nortek Signature 85 
55/250/500 kHz. These instruments typically sample at a 15-minute interval and are mounted in an upward-looking 86 
configuration above the bottom (Table 1). 87 

The raw velocity data undergo quality control procedures, followed by concatenation and gridding into a daily grid with 88 
5m-vertical resolution, as described by Bui et al. (2023). The velocity dataset comprises observations from five stations: 89 
NRSROT, WACA20, WATR10, WATR20, and WATR50. Initially, gaps in the time series are filled using linear interpolation 90 
if the temporal gap size is less than 3 days. Subsequently, for each velocity profile, gaps near the surface or bottom are filled 91 
using linear extrapolation, akin to the technique applied for temperature data. The meridional and zonal components of the 92 
velocity datasets, from August 2011 to May 2023, are presented in Figs. S2 and S3, respectively. 93 

For the 2010-2023 period, the percentage of missing mooring data varies from 2%  to 16% for temperature, and 12%-94 
33% for velocity (Table 2). The largest percentage of missing data is at WATR20, situated near the core of the LC.  95 

 96 

2.2 SOM method 97 

To produce a gap-filled data product, we follow the method described in Chapman and Charantonis (2017), the Iterative 98 
Completion by Self Organising Maps (ITCOMPSOM). As discussed briefly in the introduction, this method “completes” a 99 
gappy dataset by first using available data to train a self-organising map (SOM), which effectively clusters the data into a set 100 
of N discrete states. These states can be represented as a 2-dimensional map, where neighbouring clusters are more similar to 101 

Table 2. Percentage (%) of missing temperature and velocity for each mooring for the time period of 2010-2023.  

 Temperature (%) Velocity (%) 

NRSROT 2 12 

WACA20  19 

WATR10 7 18 

WATR20 16 33 

WATR50  21 
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each other than distant clusters. Associated with each cluster is a reference vector that approximates the mean of all data 102 
assigned to that cluster and a weighted mean of data assigned to neighbouring clusters. After the map is trained, new data can 103 
be assigned to existing clusters by comparing the Euclidian distance in data space between that new data vector and the 104 
reference vector of each cluster. The cluster with the smallest Euclidian distance is known as the Best Matching Unit. Once a 105 
SOM is available, data vectors with missing components are presented sequentially, the Best Matching Unit is found, and the 106 
missing data is completed (in-filled) by replacing it with the relevant components of the reference vector of the BMU. For full 107 
details, see Chapman and Charantonis (2017). 108 

 A schematic of using the SOM method to fill gaps in the mooring dataset is shown in Fig. 2. We utilized the Vesanto 109 
et al. (2000) SOM toolbox for Matlab 5 in this study. The temperature or velocity data, along with ancillary data, are organized 110 
into data matrices. Ancillary data include day-of-year and daily Fremantle sea level (Fig. 1). Sea level data are obtained from 111 
the University of Hawaii Sea Level Center (https://uhslc.soest.hawaii.edu/). Fremantle sea level serves as a proxy for the annual 112 
and interannual variations of the Leeuwin Current (Feng et al., 2003). The temperature input matrix comprises 4869 rows 113 
(representing the number of time steps) and 77 columns (reflecting the number of different observations at each time step). 114 
Similarly, the velocity input matrix consists of 4292 rows and 361 columns. The temperature/velocity input matrix with missing 115 
values is indicated by square 1 in Fig. 2. Only fully available profiles in the input matrix are selected as the training data shown 116 
by square 2. Consequently, the number of rows in the training data is 3675 for temperature and 1146 for velocity.  117 

The number of units in the SOM must be specified prior to the training process. Following several tests, we have chosen 118 
1000 units for temperature, and 500 for temperature and velocity, respectively. This selection was based on the number of rows 119 
in the training data. We used a batch algorithm to train the SOM (Chapman and Charantonis, 2017). The training phase of 120 
SOM was done in two steps: the first rough phase, followed by a fine-tuning phase. In the first step, the neighbourhood radius 121 
and learning rate were set to high values to gain a general orientation of the map, while in the second step, they were set to 122 
smaller values to perform only fine adjustments on the SOM unit’s position. 123 

 124 
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One important step was the assignment of each input vector to a specific SOM unit, u, shown on the right-hand side of 125 
Fig. 2. Firstly, we estimated the local correlations in the data space, represented by a COR matrix.  126 

Where DAT_cor is a correlation matrix among each normalized input vectors within a SOM unit.  127 

Given with local correlations in the data space, we then calculated the minimum Euclidean distance between a 128 
normalized input vector X and the referent vector of the SOM unit, 𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢   using a similarity function (Chapman and 129 
Charantonis, 2017). The similarity function is defined as: 130 

𝐶𝐶𝑂𝑂𝑂𝑂=1+�∑DAT_cor2, (1) 

 

Figure 2. Schematic of the SOM method applied to fill gaps in the mooring temperature and velocity data. Square 1 denotes an 
input data matrix in which rows are daily time vectors, columns are observational variables. In square 1, solid lines present full 
available profiles, while dashed lines show the profiles including missing values. In square 2, only full data profiles are selected 
for training in SOM. In SOM, we pre-define the number of units, for instance 1000 units for temperature, and 500 units for 
velocity. Each SOM unit contains a reference vector. On the right hand side, each daily input vector in the input data matrix is 
assigned to each SOM unit using a similarity function defined by Chapman and Charantonis, 2016. Finally, we use the referent 
vector of each SOM to fill gaps in corresponding daily input vector, shown in square 3. 
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After determining the most appropriate SOM unit, the missing values in the input vector were extracted from the corresponding 131 
referent vector, providing the in-filled data shown in square 3 (Fig. 2).  132 

2.3 Validation of SOM-based infilling technique 133 

For mooring data, a failed mooring/instrument often results in a block of data being lost until the next deployment. To 134 
simulate this effect, we withhold temperature data at one site for 150 days from 1/1/2020 to 30/5/2020, which is roughly the 135 
length of one deployment cycle. We utilize temperature data at the other two sites to identify the best matching SOM units, to 136 
fill in the withholding data. At NRSROT, the R² and the root-mean-square-error (RMSE) between withheld and filled 137 
temperature data are 0.70 and 0.61°C, respectively; at WATR10, these values are 0.86 and 0.39°C, and at WATR20, they are 138 
0.91 and 0.58°C, as shown in Fig. 3. For a different period-spanning from 10/1/2012 to 8/6/2012, with 150 days withheld, the 139 
comparisons yield RMSE values of 0.41°C at NRSROT, 0.36°C at WATR10, and 0.55°C at WATR20. If we repeat this process 140 
and validate the method against data included in training dataset, we obtain  RMSE figures similar to those obtained from 141 
withheld data, indicating that the SOM method is not overfitting the dataset. 142 

Using the same approach, we examine the accuracy of velocity data gap filling. Specifically, we consider the period 143 
from 5/2020 to 8/2020, during which velocity data at WATR50 within the depth range of 70-450m are withheld for 90 days. 144 
For the meridional velocity, R² and RMSE values between withheld and infill data are 0.63 and 0.12 m s⁻¹, respectively (Fig. 145 
4a). For the zonal component, these values are 0.50 and 0.05 m s⁻¹, respectively (Fig. 4b). To determine if the SOM method 146 
overfits the data, we withheld velocity data from a different period spanning from 5/2012 to 8/2012. The resulting RMSE 147 
values for the meridional and zonal velocities are 0.13 and 0.06 m s⁻¹, respectively. These findings align with the RMSE from 148 
the validation data, indicating that the SOM method effectively avoids overfitting. 149 

 150 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑋𝑋, 𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢) = ���(𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢 − 𝑋𝑋)2�, (2) 
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3 Data application 151 

Having confirmed the effectiveness of the SOM method for filling missing values in a mooring dataset, we now employ 152 
all non-missing daily data to train the SOM, and then fill the data gaps. The filled temperature data exhibit consistent temporal 153 
and spatial variability (Fig. 5). The gap-filled data capture cold temperature events at WATR20 during early 2010 and mid-154 

 

Figure 3. Observed and estimated temperatures at the three moorings between 1/1/2020 and 30/5/2020, a period of 150 
days. The red lines are the line of best linear fit.  

 

 

 

 

 

 
Figure 4. Observed and estimated (a) meridional and (b) zonal velocities at WATR50 between 5/2020 and 8/2020, a 
period of 90 days, and a depth range of 70-450 m. The red lines are the line of best linear fit.  
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2016, coinciding with periods when the thermocline shoaled under the influence of El Niños, consistent with our understanding 155 
of the dynamics of the Leeuwin Current system (Feng et al., 2021).  156 

The preprocessing of the input data via interpolation/extrapolation has dual advantages: (1) enhancing the accuracy of 157 
reference vectors in the SOM by increasing the number of good data profiles, and (2) reducing the potential for errors near the 158 
bottom depth in the input data. For example, without extrapolating the temperature data to the bottom, there are blocks of 159 
anomalous warm biases near the bottom depth in the filled data (Fig. S4).  160 

Figure 6 compares the consistency between observed and filled temperature time series at three depths of the three 161 
moorings. The filled temperatures (shown in red lines) exhibit temperature variance similar to those of the observed time series. 162 
For example, at a depth of 95m at WATR10 towards the end of 2011, the filled temperature is anomalously warm, reflecting 163 
the enhanced Leeuwin Current system during a La Niña period (indicated by the red line rising above the black dashed line). 164 
Another example, at a depth of 190m at WATR20, during the beginning of 2010 and winter of 2016, the filled temperature was 165 
cooler than normal (indicated by the red line below the black dashed line) due to the shoaling of the thermocline towards the 166 
surface during El Niño episodes. 167 

Continuous temperature time series are crucial for detecting subsurface marine heatwaves (MHWs) or marine cold 168 
spells (MCSs) that significantly affect marine ecosystems. Figure 7 shows the mean intensity of detected MHW or MCS events 169 
at WATR20 based on daily gap-filled temperatures. Following the intense MHWs during 2011-2013, MCSs occurred from 170 
2016 to 2020, contributing to the recovery of impacted marine ecosystems (Fig. 7b). Many of the events are subsurface or 171 
bottom intensified, which are less detectable from ocean surface based on satellite data alone. 172 

To highlight the role of data products in detecting subsurface marine heatwaves (MHWs), we examine several 173 
representative cases at three specific depths: NRSROT-40m, WATR10-80m, and WATR20-100m (Fig. 8). We also analyze the 174 
meridional component of velocity at these depths to explore the role of ocean currents in contributing to MHWs. A MHW at 175 
40m depth at NRSROT lasted for 9 days in September 2020, with a maximum intensity of 1.5°C, and was classified as moderate 176 
strength (Category I) (Fig. 8a). During this period, the current was directed southward (Fig. 8b). A MHW at 100m depth at 177 
WATR10 lasted for a relatively longer duration of 20 days in September 2014, with a maximum intensity of 1.9°C, and was 178 
classified as strong (Category II). Although peak current occurred during the MHW event, it led to the peak temperature 179 
anomaly by 9 days (Fig. 8d). A MHW at 100m depth at WATR20 began on 13 August 2022, and lasted for 10 days with a 180 
maximum intensity of 1.4°C. Unlike the other events, the peak current led to the MHW timeframe, specifically on 10 August 181 
2022. These observations suggest that strong southward currents often coincide with or precede MHWs by several days. This 182 
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indicates that the Leeuwin Current may be a significant factor driving subsurface MHWs on the Rottnest Shelf. Further research 183 
is needed to clarify the underlying mechanisms. 184 

 
Figure 5. Data matrix of daily gridded, 5m resolution gap-filled temperatures for NRSROT, WATR10 and WATR20. 
The x axis shows the depth ranges of each moorings, while y axis presents time period from Jan 2010 to May 2023. Note 
that 0m follows directly after preceding mooring. The SST data are derived from the Regional Australian Multi-Sensor 
SST Analysis (RAMSSA) version 1.0. White spaces indicate missing observations. 
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 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 

 193 

 194 

 

Figure 6. Comparison of observed and gap-filled temperature timeseries for a) NRSROT at 50m, b) WATR10 at 95m  and c) 
WATR20 at 190m. The black dashed lines show daily climatological timeseries at corresponding depths. The climatological 
values are estimated from gap-filled data. 
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 195 

 196 

 197 

 198 

 199 

 200 

 201 

 
Figure 7. Mean intensity for individual (a) MHW and (b) MCS events at WATR20. Estimation is based on daily gap-filled 
temperature. The definition of each event follows Hobday et al. (2016).  This plot is performed using Matlab code (Zhao and 
Marin, 2019). The threhold temperature indentifying a MHW or a MCS is set at the 90th and 10th percentile, respectively. Three 
arrows in (a) denote times of MHW events shown in Figure 8.  
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Overall, the filled velocity data are consistent with temporal periods of data gaps both at the mooring location and at 202 
the adjacent mooring sites (Figs. S5 – S8). The observed mean vertical profiles agree well with those derived from the filled 203 
data (Fig. S7), indicating that the SOM method faithfully reconstructed the vertical structure of the LC.  204 

The LC flows along the shelf break so that velocities measured at WATR20 and WACA20 are suitable for characterizing 205 
the LC. From the v-component data, the maximum mean southward currents recorded at WATR20 and WACA20 are 0.25 m 206 
s-1, and 0.12 m s-1, respectively (Fig. S7 d, b). Furthermore, the depths corresponding to these maximum values at the two 207 
stations are 80m and 100m, respectively. It can be inferred that the LC decelerates and deepens as it flows from WATR20 to 208 
WACA20. The irregular topography around the head of Perth Canyon may contribute to this disturbance (Fig. 1). 209 

 
Figure 8. Left panels: Examples of  marine heatwaves at NRSROT-40m (a), WATR10-80m (c), and WATR20-100m (e). 
Categories are moderate (yellow – category I) and strong (red – category II), as defined by Hobday et. al., 2018. In (a), the 
dashed red lines are estimated as twice  the 90th percentile difference from the mean climatology value. Righ panels: Meridional 
component of the current velocity at the same time and depth as MHWs shown in the corresponding left panels. In all panels, 
vertical blue lines indicate the time frame of each MHW event.  
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4 Data availability 210 

The outcome of this research yields the in-filled data product, which is available at https://doi.org/10.25919/myac-yx60 211 
(Bui and Feng, 2024). The product comprises continuous daily-5m resolution temperature and current variables (Table 2). All 212 
data products are available as NetCDF files. In addition to main parameters such as temperature and current, we provide quality 213 
control flags that indicate the original data sources. Specifically, we use seven flags for SOM-filled temperatures and four flags 214 
for SOM-filled currents, as detailed in Table 2.  215 

We provide direct links to all datasets used in this study:  216 

- The unfilled gridded data- https://doi.org/10.25919/9gb1-ne81 (Bui et al., 2023); 217 

Table 3. Variables incuded in the in-filled data product. 

Parameter Variable name Units Description 

Time TIME  An array containing time information ( days since 1950-
01-01 00:00:00 UTC. 

Depth DEPTH Meters (m) An array containing depth levels. 

Longitude LONGITUDE 0E  

Latitude LATITUDE 0N  

Temperature TEMP 0C A matrix containing temperatures over the entire record 
for whole water column. 

Temperature_quality 
control 

TEMP_quality_control  A matrix containing flag values that indicate the original 
temperature data.  
1: Observed temperature 
2: SST 
3: Interpolated temperature near surface 
4: Extrapolated temperature near bottom 
5: SOM filled temperature near surface 
6: SOM filled temperature in sensor range 
7: SOM filled temperature near bottom 
 

U velocity UCUR m s-1 (true east) A matrix containing current data over the entire record 
for whole water column. 

V velocity VCUR m s-1 (true 
north) 

Current_quality_control UCUR_ 
quality_control 
VCUR_ 
quality_control 

 A matrix containing flag values that indicate the original 
current data.  
1: Observed current 
2: Extrapolated current near surface 
3: Extrapolated current near bottom 
4: SOM filled current 
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-  218 

- Satellite sea surface temperature from the Regional Australian Multi-Sensor SST Analysis (RAMSSA)- 219 
https://portal.aodn.org.au (Beggs et al., 2011);  220 

- Fremantle sea level from the University of Hawaii Sea Level Center - https://uhslc.soest.hawaii.edu. 221 

5 Code availability  222 

We provide scripts in MATLAB to download and plot the data products. These scripts are available online (Bui and 223 
Feng, 2024), and are available under a Creative Commons Attribution 4.0 International license (CC BY 4.0).  224 

6 Summary and discussion 225 

In this research, we have employed a SOM-based method to fill significant temperature and velocity measurement gaps 226 
from a mooring array on the Rottnest shelf off southwest Western Australia that monitors the Leeuwin Current and associated 227 
shelf processes. We use daily temperature records from 3 moorings of approximately 14.5 years, and nearly 13 years of daily 228 
current velocity records from 5 moorings, in conjunction with daily SST and coastal sea level at Fremantle, to train SOM. 229 
Because this is a relatively small mooring array, we pre-process observational data using interpolation and extrapolation to 230 
have enough non-missing daily data profiles to train SOM. Evaluated with withholding data, the RMSE for temperature 231 
estimations at the 3 moorings are 0.61oC at NRSROT, 0.39oC at WATR10, and 0.58oC at WATR20, respectively. The RMSE 232 
for the meridional (alongshore) and zonal (cross-shore) velocities are 0.1 m s-1 and 0.05 m s-1. In addition, the data pre-233 
processing brings better consistency between the observed and gap-filled data.  234 

Our continuous daily data products reveal that many MHW and MCS events occur sub-surface, which are undetectable 235 
while using altimetry data. We also find that intense MHW events are frequently related to strong southward currents. 236 
Sustaining mooring observations into the future are needed to understand the long-term trends of MHWs and MCSs, as well 237 
as the factors driving extreme temperatures.  238 

Addressing small gaps in the mooring data appears to be a crucial step before training SOM. We have tried two other 239 
options: assigning missing values as zeros or replacing them with climatological values derived from the original data. We 240 
have experimented with these two options with an iterative approach (e.g. Sloyan et al. 2023) but found that the filled 241 
temperature time series exhibits some inconsistency, such as a block of constant values or temperature inversions. Our option 242 
of pre-processing the observational data by filling small gaps increases the number of good profiles for training, e.g., 75% of 243 
temperature profiles are gap-free. The method can be easily applied to fill data gaps in shelf mooring arrays with small gaps 244 
in the vertical so that little errors are introduced from linear extrapolation. For complex mooring systems with enough 245 
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redundancy, the Iterative Completion Self-Organizing Maps (ITCOMPSOM) method outlined in Sloyan et al. (2023) could be 246 
more useful. 247 

7 Supplement 248 

The supplement related to this article is available online at: https://doi.org/10.25919/myac-yx60. 249 
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